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ON THE LINEAR SEISMIC RESPONSE OF SOILS WITH MODULUS
VARYING AS A POWER OF DEPTH—THE MALIAKOS MARINE CLAY

THALEIA TRAVASAROUY and GEORGE GAZETASD

ABSTRACT

The dynamic response of a soft and thick marine clay layer subjected to vertically propagating shear waves is
obtained analytically. The deposit constitutes the topmost layer which will support a major 3.6 km long immersed
tunnel in a high-seismicity region of central Greece. S-CPTU measurements show that the soil shear wave velocity
varies with depth as V,=mz?/2, i.e. with a zero value at the surface. It is shown analytically that the shear strain just
beneath the ground surface of such a deposit either vanishes or tends to infinity, depending on the exact rate of increase
of the shear wave velocity with depth, as reflected in the parameter p. The steady-state response is also studied and
an analytical expression for the amplification ratio is provided, while the consequences of soil nonlinearity are

highlighted.
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INTRODUCTION

It is not rare in marine sediments that the shear
modulus of the soil at the surface is nearly zero. Such a
marine soil deposit was found under the seabed of a
planned 3.6-km long immersed highway tunnel which will
bridge Maliakos Gulf in central Greece. The seismic
behavior of this structure depends on the dynamic
displacements imposed by the surrounding soil. The
dynamic response of the soil deposit was therefore of
prime interest, and motivated the analyses and the
subsequent research reported in this paper.

With design accelerations of 0.35g at stiff ground
outcrop, the first numerical results of the equivalent
linear response of the soil exhibited no convergence,
implying that acceleration and strains tend to become
very large at the surface. To verify this result, an analyti-
cal study was initiated and is reported herein. A general,
at first surprising, conclusion is drawn from the linear
studies: the seismic strains in the soft soil at the ground
surface tend to infinity under the assumption of linearity.

Based on the Maliakos Gulf case history, the scope of
this paper is to analytically demonstrate the infinite
growth of the dynamic elastic motion at the surface of a
soil deposit, when the shear modulus varies according to
a certain manner with depth, having zero value at the
ground surface.
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i)
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BRIEF REVIEW OF PREVIOUS RESEARCH

Several researchers have previously studied the
dynamic characteristics of soils having continuously
varying stiffness with depth. In his doctoral thesis Dobry
(1971) investigated the free and forced vibration of soils
where the increase of shear wave velocity with depth was
represented by Vi.=coz??. He developed closed-form
expressions for the fundamental periods and mode
shapes, and showed that under certain conditions the
shear strain at the free surface does not necessarily
tend to zero. Gazetas (1982), studied the effect of the rate
(1) and type (m) of heterogeneity on the fundamental
period and the dynamic response of a soil deposit with
shear wave velocity increasing from a non-zero value ¢, at
the free surface to V;=co(1+uz)™, at depth z, with m
taking the values 1, 2/3, 1/2, and 1/4. He came to the
conclusion that the closer to uniform the distribution of
velocity with depth is (i.e. the smaller m is), the larger the
fundamental period of this layer becomes for the same
average velocity. More importantly he revealed a very
sharp increase of modal amplitudes near the surface with
m=1and m=2/3. This is indicative of a rapid growth of
the shear strain close to the free surface.

Based on borehole data at the Shin-Ohta site in Japan,
Towhata (1996) has convincingly generalized the above
studies. He showed that the shear wave velocity can vary
continuously with depth, even despite changes in the soil
type (i.e., for soil ranging from reclaimed fill to alluvi-
um). He then studied the dynamic response of a profile
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Table 1. Natural frequencies, natural periods and modal shapes of soils with varying shear modulus with depth
S-wave velocity or Reference Fundan.lenlal periods/ Modal shapes
shear modulus frequencies (n=1,2. ..
V,=cyz""? Dobry 2-p Co NRAERI
s (1971) w,= 5 ;}6%&7‘5 q, U.()=—— @ /ZY uuxl ). J(q (/22 - pb
H: depth of deposit n=1, 2, ... modal number
q,: nth root of Ji(q) Z=2z/H normalized depth
I'(x): Gamma function of x
gq,: nth root of Ji(q)
J;(x): Bessel function of order j with argument x
V= co(1 +uz)*? Gazetas T _4H 3rn U2 =1+0z2)""Psin (S, [(1+a2)* =1 +)'")
(1982) "7, 218, Z=z/H normalized depth
H': depth of deposit A=pH )
a=uH S,: numerically recovered eigenvalues of the characteristic
S,: numerically recovered equation.
eigenvalues of the characteristic
equaﬂon.
G=A(z+z)" Towhata o H“ /2 br0<n<2
(1996) h= @- m)éH U Yo dJ, J
iH.argurnentthatleadsto the (@)= pw 4/ 0 (€)= é ve1(6)
first zero of the displacement
2—m
at the surface = J&) { YO - 8Y,0(8)
p: soil density 2
A: shear modulus parameter C;: constant parameter
E=Mz+z) ™"
&= Azgz—m/z
2 e’
2-m A
J,, Y,: Bessel functions of first and second kind respectively
and order v

where the shear modulus varies with depth according to G
=A(z+2z0)". His formulation allowed for the modulus
(or the shear wave velocity) to vanish at the free surface if
z0=0. Towhata showed that when this is the case, the
displacement at the surface grows infinitely large. The
main formulae of the above research efforts are summa-
rized in Table 1.

MALIAKOS GULF IMMERSED TUNNEL AND SOIL
CHARACTERIZATION

A 3.6 km-long immersed tunnel is currently being
designed in a seismically sensitive region of Greece, bridg-
ing the gulf of Maliakos. The geotechnical exploration
program, which included extensive in-situ and laboratory
testing both offshore and onshore, has revealed the
existence directly under the tunnel of a very soft normally
consolidated clay (hereafter called Soft ‘‘Maliakos”’
Clay) of variable thickness, reaching about 30 m, and
covering about 2/3 of the total bridging length. Both
shear modulus and shear strength of this layer increase
almost linearly with depth and approach zero at the free
surface. Figure 1 gives a section of the soil profile along
the tunnel line. Typical in-situ test data are shown in
Fig. 2. Indicative of the low mechanical characteristics of
the soft clay is the consistently near zero N values of the
SPT test (Nspr=0-2), the small values of the cone tip
resistance g., the high values of porewater pressures u#cpr

of the Cone Penetration CPTU tests, and the small values
of the field vane shear strength. The latter however, with
values of merely 10 kPa at a depth of 10 m, are far more
erratic than the CPTU data. A plasticity index of PI=30
and a density increasing with depth with a mean value of

p=1.6t/m? have also emerged from the laboratory tests.

Direct measurements of the shear wave velocity
through Crosshole and Downhole tests were only per-
formed in different positions onshore, while extensive
seismic cone penetration testing CPTU was performed
both offshore and onshore. It was concluded that the
offshore layer referred to as Soft ‘‘Maliakos’ Clay
extends onshore for a distance of at least 1 to 2 km. The
differences in the stiffness of the Soft Clay onshore and
offshore, which can be observed in Fig. 2, reflect the
additional consolidation due to the onshore alluvial
cover. The elastic shear wave velocity Vs, (i.e. at very
small strains, y < 107°) was then correlated with the value
of the cone tip resistance g.. The results, which are
presented in Fig. 3, suggest that the correlation of the
shear wave velocity and tip cone resistance (g.) offshore is
best described by:

Vso=150g;" 1)
Due to the linear dependence of ¢g. on z,
Vso=30z'" @

which implies continuous variation of the shear wave
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Fig. 2. Typical in-situ test data in the soft ‘‘Maliakos’’ Clay offshore
and onshore as obtained from the standard penetration test, cone
penetration test, and field vane test

velocity with depth. Admittedly, the data in Fig. 3 do not
unequivocally support the assumption of zero stiffness at
the surface of the soft clay may. However, this assump-
tion is consistent with the dependence of the shear
modulus on the effective overburden stress, which is zero
at the soil surface. Furthermore, this assumption is
supported by the truly zero values of both Standard and
Cone Penetration tests. Note that zero value of the shear
modulus at the soil surface has been used by many other
researchers (e.g. Afra and Pecker, 2001) in their analyti-
cal derivations. (See also the classical work of Gibson,
1967, 1974.) Finally, the rationality of the assumed rate
of increase of the shear wave velocity with depth can be
confirmed by actual data of the soil stiffness (e.g. Lu et
al., 1991; Fumal et al., 1981, etc.).

Additionally, the geotechnical exploration revealed
the existence of a stiff clay layer underlying the soft
““Maliakos’’ clay and extending to a depth of 60 to 80
meters. With a liquidity index of about 0.3 and a density
of 2.1 t/m? the stiff clay has substantially better mechani-
cal properties compared to the soft ‘““Maliakos” clay.
However, a detailed characterization of this stiff clay was
left for the final design stage. For this stiff clay, the shear
wave velocity profile was constructed based on the results
of one crosshole test performed onshore and reaching a
depth of 50 meters. Moreover, a linear variation of the

Schematic cross-section of the soil profile along the tunnel line
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Fig. 3. Empirical correlation between small-strain shear wave velocity
and tip resistance of the CPT test

shear wave velocity with depth was assumed based on the
fact that the shear wave velocity is still affected by the
vertical effective overburden stress at this depth. Synthe-
sis of all available information led to the idealized soil
profile depicted in Fig. 4, which was subsequently used in
all dynamic response analyses.

EQUIVALENT LINEAR SEISMIC RESPONSE

At first the seismic response of the Soft Clay was
evaluated using one-dimensional equivalent linear
dynamic analysis (SHAKE type, i.e. Schnabel et al.,
1972), which can only account for the possible nonlinear
soil behavior iteratively, by adjusting the values of the
shear modulus and damping ratio to the strain level
induced by the shaking. The use of one-dimensional
analysis is justified by the very smooth geometry of the
problem. The variation of the shear wave velocity with
depth used in the soil response analyses was already
presented in Fig. 4, where the thickness of the soft clay
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layer was parametrically varied to 20, 32, and 40 meters.
The degradation of the shear modulus and hysteretic
damping with increasing shear strain was modeled using
the modulus reduction and damping curves proposed by
Vucetic and Dobry (1991) for cohesive soils with PI =30
and PI=15 for the soft and stiff clay respectively.

Three input motions were selected for use in the
dynamic response analyses, the main characteristics of
which are summarized in Table 2. The selection was
based on the agreement of the recorded peak values (i.e.
peak ground acceleration and peak ground velocity) with
the values corresponding to a return period of 500 years
computed in a separate probabilistic seismic hazard
analysis for the region (Gazetas, 1997). Still, the
acceleration-time histories were selected to have different
duration characteristics with the intent to explore the
effect of duration on the dynamic response of the soft soil
profile. Figure 5 presents the acceleration response
spectra for 5% damping of the three excitations.

The response of the soil column was initially com-
puted, after scaling all three motions to a peak accelera-
tion of 0.35 g at the bedrock. Convergence, however,
failed to occur! Then, a lower value of peak acceleration
was applied as excitation. Convergence was finally ac-
complished only after setting the maximum acceleration

0 T 1 7T ‘ T T T T l L F T 1T 1 7T
Soft "Maliakos" Clay 1
F Pl= 30 1
- p=1.6 t/m? 1
20 =
E | I
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Fig. 4. Variation of small-strain shear wave velocity with depth in the
idealized soil profile used in the dynamic response analyses

at a mere 0.05 g. Still, despite this small amplitude of the
excitation both the maximum shear strain and the peak
ground acceleration were enormously magnified, at the
surface. This magnification was in fact, a sensitive
function of the thickness of the layers into which the top
of the soil was discretized. For a thickness of the top layer
of 0.20 m:

Unax=0.35g, and Y4u=10%. 3)

Even larger values were computed with a topmost layer
thickness of 0.10 m, and so on.

Figure 6 depicts the variation of the peak acceleration
and the peak shear strain in the uppermost 5 meters of the
idealized soil profile computed for the 32-meter deep
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Fig. 5. Acceleration response spectra for 5% damping of the record-
ings used as input motions in the dynamic site response analyses
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Fig. 6. Typical amplification of the maximum horizontal acceleration
and the maximum shear strain close to the surface of the in-
homogeneous profile as computed by the equivalent linear analyses

Table 2. Ground motion characteristics of the three records used as input in the dynamic response analyses

Record Earthquake” M R? PGA PGV PGD T, T, D o Forward
(km) (9] (cm/s) (cm) (s) (s) (s) directivity
OTE® AG (1995) 6.2 5.0 0.38 40 4 0.55 0.48 4 yes
Anderson Dam LP (1989) 6.9 21.4 0.25 22 7 0.47 0.20 18 no
Anderson Dam MH (1985) 6.2 2.6 0.29 28 6 0.55 0.48 10 no

Y AG: Aegion, Greece, LP: Loma Prieta, USA, MH: Morgan Hill, USA.

»  Rupture distance

®  This record is a deconvolved record obtained from a 1-D equivalent linear analysis with the original recording used as input at the surface.
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layer of soft ‘‘Maliakos’” clay and for the three input
motions with peak acceleration at the base equal to
0.05 g. This behavior was found to be insensitive to
variations in either the characteristics of the excitation or
the total thickness of the soft clay layer. In addition, as
already mentioned, the final results are strongly de-
pendent on the discretization of the soil deposit into
homogeneous layers of progressively increasing stiffness:
the thinner these layers are just below the surface, the
greater is the magnitude of the computed peak ground
motion (acceleration and strain). Note that with a very
fine discretization of the soil profile, the inhomogeneity in
shear modulus is approximated with greater accuracy
(and it precisely alludes to the actual concept of V,—0 as
z—0).

This behavior prompted the analytical study described
in the sequel. When a soil deposit undergoes large
deformation it degrades in stiffness. It is customary to
describe such behavior in terms of an equivalent-linear
stiffness, compatible with the amplitude of the shear
strain. In the case of the Maliakos soft clay layer, the
strain-compatible shear wave velocity profile obtained at
the final iteration of the equivalent linear analysis, was
approximated with the following analytical expression:

Vi= 162" @

This expression was found to be valid in all cases,
independently of the specific characteristics of the
excitation and the exact depth of the soft clay layer.
Notice that the variation of velocity in Eq. (4) exhibits a
more rapid increase with depth (2/3 power) than Eq. (2)
(1/2 power)—this is understandable in view of the larger
shear strains (and hence the increased softening) as one
approaches the ground surface.

The rapid growth of the maximum horizontal accelera-
tion within only a few meters from the soil surface in
relatively soft clayey deposits with continuous variation
of the shear wave velocity with depth has been captured,
although infrequently, by downhole arrays. Figure 7
offers convincing evidence of such a case, reported by Lu
et al. (1991). The authors explored the amplification
characteristics of a 40-meter deep soil deposit composed
of mainly clay having small values of the standard
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Amplification ratios of peak ground acceleration recorded in borehole C, of the Chiba array in Japan (from Lu et al., 1991)

penetration resistance at shallow depths (i.e. N~ 5 at 0-5
meters) and shear wave velocity increasing with depth at a
rate very similar to that of Eq. (4). Using the downhole
recordings from 26 earthquake events, with magnitudes
ranging between 4.0 and 7.9, at epicentral distances from
5km to 702 km, the authors concluded that: ‘... the
amplification of peak acceleration mostly occurred at a
Jew meters below the ground surface, which is considered
to be caused by the top soft layer.”’ (Lu et al., 1991).

RIGOROUS ELASTIC ANALYSIS

It was concluded from the numerical analyses that
exceedingly large amplification at the surface of the soft
clay tends to develop when the shear wave velocity profile
is described by expressions (2) and (4). The persistence
of these results motivated the search for an analytical
verification. Such an analytical solution, aimed at
explaining and generalizing the phenomenon, is thus
presented here. The problem to be solved is defined as
follows:

A soil deposit of thickness H, constant density p, and
shear wave velocity varying with depth as

Vi=mz*", )

is excited by vertically propagating horizontal shear
waves described by the harmonic base displacement

u="Ue", 6)

The deposit overlies rigid rock. Equilibrium of an
arbitrary soil element in the horizontal direction yields
T d*u(z, t)
—=p 7
oz ¥ ar ™

which upon substituting:

=G, G=py? and =% @®
0z m

yields the governing equation of motion:

Ezu"(mjzU'(z)+m§z2“U(z)=o ©)

The above differential equation is a Bessel Differential
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Equation, the solution of which is given by
Uz)=z2""0c Ji,3R.2") + 2 Y1 2(3R0z' )]

where J and Y are the Bessel functions of first and second
kind, respectively, and order 1/2 (i.e. Abramowitz and
Stegun, 1970). Since

2 .
Jl/z(x)=ﬁ51nx
2

(10)

(11
Yin(x)= —[ sin x
X
where
x=3R.z"", (12)
and defining
c-ﬁ-c c—f'c 13)
11 37'[ 1y 22 37_[ 2

the amplitude of the displacement and its derivative with
respect to z (representing shear strain) are

1
= 727y sin BRez') + e cos BRoz'P)] (14)

U(Z):ﬁ

1
U’(z)=ﬁz“/3[(—%z“—szé)?oz”2”> sin (39‘?021/3)

-1
_2/3_C222

+ (Cll E}?oz ) Ccos (35}?021/3)} (15)

Natural Frequencies of the Soil Deposit

In the absence of external excitation, the eigenvalues of
the system are derived by enforcing the two boundary
conditions:

« Shear stresses vanish at the surface of the soil

lim 7,x=lim (G 95) =lim (z“” ‘;—Z) =0 (16)

z—0 z—0 aZ z—0

« Displacements vanish at the interface between the
soft soil and the baserock

U(z=H)=0 (17)
From the first boundary condition and with ¢;;=¢:
c
U(z)= z " sin BRoz " 18
(z) T ( ) (18)
and, then, the second leads to
3RH'P=nn (19)
from which the natural frequencies are uncovered
~ nm m
w"_43—H”3 n=1,2,... (20)
The natural periods are therefore
6 H'”
n m

For comparison, the natural periods of the corre-
sponding homogeneous soil deposit having thickness H
and constant shear wave velocity ¥, computed by Eq. (22)

are given by Eq. (23):

H
5 V.dz
Vi="x f—=% mH*? (22)
Sdz
0
1 4H_20/3 H'" )

" on—1 V. 2n—-1 m
For n=1 the two equations (21 and 23) give, respectively
1/3 1/3

H
(Tl )in hom — 6 and (T} )hom =6.67 —
m m

24)

while 7,/T;=1/2 for the inhomogeneous deposit,
compared with T,/7T,=1/3 for the equivalent homo-
geneous.

To get the eigenmodes of the soil deposit it suffices to
substitute (20) into (18)

Vg z\"”
Un(z)OCH_l/éz sin {nm E

Infinite Shear Strain at the Soil Surface

The shear strain at the surface of the soil deposit is
given by Eq. (15), with ¢ =0 (which stems from the first
boundary condition) and ¢, =c:

25)

U'(z)= z"/3[—§z-‘sin(3moz‘“)

V%o

+ Rz 27 cos BRoz ’/3)} (26)

It can be verified after some straightforward algebra that
the limit, as z—0 is

c . i 1/3 _& s_ig_(3§)?oz”3) —
mlll%[z(m°°°s(3m°z T e )77
(27)

(simply recalling that as x—0, cosx—1, and (sinx/
x)—1). In other words, the shear strain at the surface
tends to infinity.

This interesting observation can be generalized: the
shear strain at the surface would either tend to zero (0) or
tend to infinity (), depending only on the rate of
increase of the shear wave velocity with depth.

Indeed, for the most general case of shear wave
velocity increasing according to:

(28)

Dobry et al. (1971) had shown that the normalized
eigenmodes are given by

Vs - mz"/z

~ .i'Z(I/Z)(l*p).]j(qnz(l/l)(Z—p)], n=1,2,...

(29)

where: I'(x)=Gamma function of x
J;=Bessel function of order j
g.=n"root of J;(q)
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Z=z/H, normalized depth

Using their results we can easily show that shear strains at
the surface tend to zero when O0<p<1, but that when
p>1, which is indeed the case for the Soft Clay of
Maliakos (where p=4/3),

$(0) o< U;(0) > © (30

i.e., the shear strain at the surface fends fo infinity. On
the other hand, when the shear modulus at the surface
has any non-zero value, the boundary condition of zero
shear stress imposes invariably the condition of y(0)=0.

Natural Mode Shapes of the Soil Deposit

The maximum displacement at the surface is evaluated
by the limit of Eq. (18) for z—0. Defining for each
fundamental frequency:

we obtain

on

Un(z=0)=lim [J;t—z“/3 sin (35)‘tonz”3)]

=3cH2 lim

z—0

{Sin BRonz'?) a1)

3Ronz'?
The normalized modal shapes are therefore given by
- Un()_sin BRonz'?)
RAQ 3Ronz'”?

] =3cRa’

from which

- 1 -1/3 1/3
U =— o sin | n7 2 ‘
nn \H H

As a reminder, the corresponding modal shapes of the
homogeneous soil profile with the same thickness are
given by:

(32

0,=228) _ o5 [(2;1— L } (33)

U.(0) 2 H

The first five modes of the studied (inhomogeneous)
soil profile, given by Eq. (32), are drawn in Fig. 8.
Furthermore, Fig. 9 compares the first four mode shapes
of the inhomogeneous soil profile and those of the
corresponding homogeneous. We note that in the case of
the inhomogeneous profile, there is a sharper attenuation
of modal amplitudes with depth. The soil layer remains
almost “‘inactive’’ below a depth of merely z/H=0.10.
The asymptotic way of the modal displacements as we
approach the surface in the inhomogeneous stratum, is in
clear agreement with the infinite growth of the peak shear
strain at that level. On the contrary, the mode shapes of
the homogeneous soil profile reach the surface being
tangent to the vertical, implying a zero value of the shear
strain.

Steady State Harmonic Response
The steady state response to a harmonic base excita-
tion, u(z, t)= Une™" is given by

U,(2) 7 U (0)
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Fig. 8. TFive first eigenmodes of the inhomogeneous soil with V=
mz*” computed using Eq. (32)
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Fig. 9. Comparison of the first four eigenmodes of the inhomogene-
ous (V,,.=mz2/ %) soil with those of a homogeneous deposit with the
same depth

173 & 1/3
H) sin 3%Roz'") (34)

U(Z) = Uh (’ sin (gmoH]B)

V4
Of particular interest is the amplitude of the amplifica-
tion function, that is of the transfer function for the
displacement at the surface from the displacement at the
baserock. Since
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3 Fig. 11. Typical variation of the maximum horizontal acceleration
5 and the maximum shear strain with depth for the inhomogeneous
§ profile computed with nonlinear analyses. Two different assump-
tions are made for the value of the undrained shear strength at the
ground surface
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g where A =the hysteretic damping ratio. Evidently in the
< homogeneous soil layer the role of the higher natural
modes becomes progressively smaller, and is usually
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Frequency (Hz)

Fig. 10. Dynamic amplification factor computed by the analytical
closed-form solution (i.e. Eq. (36)) for three different thickness
values of the soft clay and three values of the damping ratio

U(O)=li£101 U(z)

3R H 3 rmsma%fﬂ

- i (1

"sin BRH ') 0\ 3%R0z'7)
3EROHl/3

=Y in G H') 35)

the amplification factor becomes:
wH'"?
_U@z=0) 3 m
" U(z=H) _ [3wH'?
Uz=H) sin (__w )
m

(36)

Soil damping can be accounted for in Eq. (36) by replac-
ing m with a complex number equal to m*=m(1+i&).
Figure 10 plots Eq. (36), for three values of the thickness
of the soft Maliakos clay (i.e. =20, 32, and 40 m) and
three values of the damping ratio. Notice that the peak
amplitudes attain a nearly constant value for all modes;
only at very large damping ratios one sees a slightly
decreasing importance of higher mode resonance
—another cause of the infinite growth of elastic strains,
displacements, and accelerations at the surface. By
contrast, recall that for a homogeneous soil layer the
peaks of the amplification function, A, are given by (e.g.

negligible beyond the second mode.

NONLINEAR RESPONSE

In addition to the theoretical value of the above
conclusions, their practical usefulness is in interpreting
the results of microtremors, which might lead to the high
near surface amplifications as predicted by the linear
theory. On the other hand, a strong seismic motion
would lead to nonlinear response especially near the
ground surface. Intense nonlinearity would reduce the
transmitted accelerations to low values, mainly in
function of the precise value of the actual soil strength
Su(z=0).

With this in mind nonlinear analyses were performed
using the computer algorithm DESRA (Lee and Finn,
1978) in which the soil is modeled through a hyperbolic
T—y monotonic relationship along with the Masing
criterion for cyclic unloading and reloading. Identical soil
profiles, in terms of soil stiffness, were used in the
equivalent linear and nonlinear analyses. Additionally,
the results of vane shear data performed in the soft
““Maliakos’’ clay to a depth of 30 meters justified the use
of an undrained shear strength, S,, increasing with depth
as S,=1.2z. At the surface, the value of the undrained
shear strength was parametrically varied to be zero and
5 kPa. The results were strongly dependent on the value
of the shear strength at the ground surface. The vanishing
of the shear strength serves as a cut-off, impeding the
propagation of the shear waves and leading to a surface
peak acceleration reduced to the very small value of
0.07 g as shown in Fig. 11. Notice however, that the

NI | -El ectronic Library Service



The Japanese Geot echni cal

Soci ety

LINEAR SEISMIC RESPONSE 93

Masing criterion may substantially overpredict the soil
damping, and therefore the results may underpredict
reality.

CONCLUSIONS

An analytical closed-form solution was developed
for the free and forced vibration of a linear elastic
inhomogeneous soil deposit subjected to vertically
propagating shear waves. The soil inhomogeneity is
described by the variation of the shear wave velocity with
depth according to V.=mz??. Such a variation can be
typical of soft clay subjected to relatively weak ground
motion. It was shown that for a linear elastic material the
shear strain computed at the surface of the soft clay tends
to infinity, despite the boundary condition of vanishing
shear stress. This analytical finding is indirectly support-
ed by downhole recordings in a soft-clay soil profile. Such
recordings show that ground motion can be amplified
significantly in the upper few meters of soft soil.
Apparently, the trend of this amplification is controlled
by the nearly zero value of the soil stiffness at the ground
surface and the specific (relatively rapid) rate of increase
of the shear wave velocity with depth.
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